An efficient sparse regularity concept
نویسندگان
چکیده
Let A be a 0/1 matrix of size m × n, and let p be the density of A (i.e., the number of ones divided by m · n). We show that A can be approximated in the cut norm within ε ·mnp by a sum of cut matrices (of rank 1), where the number of summands is independent of the sizem ·n of A, provided that A satisfies a certain boundedness condition. This decomposition can be computed in polynomial time. This result extends the work of Frieze and Kannan [16] to sparse matrices. As an application, we obtain efficient 1 − ε approximation algorithms for “bounded” instances of MAX CSP problems.
منابع مشابه
Extremal hypergraph theory and algorithmic regularity lemma for sparse graphs
Once invented as an auxiliary lemma for Szemerédi’s Theorem [106] the regularity lemma [105] has become one of the most powerful tools in graph theory in the last three decades which has been widely applied in several fields of mathematics and theoretical computer science. Roughly speaking the lemma asserts that dense graphs can be approximated by a constant number of bipartite quasi-random gra...
متن کاملQuasi-randomness and Algorithmic Regularity for Graphs with General Degree Distributions
We deal with two intimately related subjects: quasi-randomness and regular partitions. The purpose of the concept of quasi-randomness is to measure how much a given graph “resembles” a random one. Moreover, a regular partition approximates a given graph by a bounded number of quasi-random graphs. Regarding quasi-randomness, we present a new spectral characterization of low discrepancy, which ex...
متن کاملSzemerédi's Regularity Lemma for Matrices and Sparse Graphs
Szemerédi’s Regularity Lemma is an important tool for analyzing the structure of dense graphs. There are versions of the Regularity Lemma for sparse graphs, but these only apply when the graph satisfies some local density condition. In this paper, we prove a sparse Regularity Lemma that holds for all graphs. More generally, we give a Regularity Lemma that holds for arbitrary real matrices.
متن کاملHoles in Graphs
The celebrated Regularity Lemma of Szemerédi asserts that every sufficiently large graph G can be partitioned in such a way that most pairs of the partition sets span -regular subgraphs. In applications, however, the graph G has to be dense and the partition sets are typically very small. If only one -regular pair is needed, a much bigger one can be found, even if the original graph is sparse. ...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009